

ordeaux 🔵 Limoges 🔵 Montpellier 🕘 Nîmes 🔵 Toulouse

BIOLOGICAL IMAGE ANALYSIS INTRODUCTION AND OVERVIEW

Volker Baecker

Montpellier RIO Imaging - TIGR Biocampus Montpellier

volker.baecker@mri.cnrs.fr

3^{ème} Ecole d'Imagerie du petit animal appliquée au cancer 27-30 Mai 2013 - Montpellier

OVERVIEW

1. Digital image

- 2. Basic Image Analysis
- 3. Advanced Image Analysis and Applications
- 4. Software Tools

WHAT IS A DIGITAL IMAGE? – EXAMPLES

Confocal scan of a Drosophila brain (ImageJ)

Embryonic heart of a 3 day old zebrafish (Imaris – Bitplane)

Image: Benjamin Schmid, Heisenberg lab in Wuerzburg Image: Michael Liebling and Arian Forouhar, Caltech

WHAT IS A DIGITAL IMAGE? – MATHEMATICAL POINT OF VIEW

- matrix of sample values
 - finite number of samples
 - finite number of values per sample

- image dimensions
 - 1D, 2D, 2D+t, 3D, 3D+t,
 3D+t+multispectral

$$- \mathbf{I}_{(x,y,z,t)} \in \mathbf{W}^n$$

0	0	0	0	0	2	3	1	10	12	13	14	11	5	T	0	0	0	0
0	0	0	1	1	7	14	17	25	30	30	29	26	16	7	2	0	0	0
0	0	0	4	8	18	26	37	48	52	52	53	41	30	18	9	3	0	0
0	0	3	8	19	29	44	60	72	76	73	67	61	45	30	19	7	0	0
0	0	5	14	27	45	61	79	94	102	98	88	70	59	43	26	13	5	0
0	1	7	18	35	56	79	99	111	114	108	94	80	67	53	36	19	8	0
0	4	12	23	40	62	87	105	123	124	111	97	83	73	59	45	28	12	2
0	4	12	23	41	62	89	108	120	117	103	96	88	75	63	47	29	13	2
0	3	10	21	37	54	80	102	108	103	96	88	80	67	56	41	21	6	0
0	2	8	17	28	44	62	75	84	88	87	80	62	53	43	27	11	3	0
0	0	4	12	19	31	43	52	63	65	67	56	49	41	28	15	5	0	0
0	0	1	6	9	16	25	34	39	45	40	38	32	25	15	5	0	0	0
0	0	0	1	4	8	13	18	22	20	22	18	16	8	3	1	0	0	0
0	0	0	0	1	2	4	5	9	6	7	5	3	0	0	0	0	0	0

WHAT IS A DIGITAL IMAGE? – DISPLAYED BY THE COMPUTER

- mapping between sample values and display colors
 - bright means high values
 - bright means low values
 - brightness / contrast adjustments
 - lookup tables

When I use a word," Humpty Dumpty said, in rather a scornful tone, "it means just what I choose it to mean neither more nor less.

L. Carroll, Through the Looking-Glass

WHAT IS A DIGITAL IMAGE? – DISPLAYED BY THE COMPUTER

- mapping between sample grid and display grid
 - homogenous rectangles
 - interpolation

WHAT IS A DIGITAL IMAGE? – REPRESENTED IN MEMORY

Formats	Values	Interpretation
8-bit	0-255	unsigned integer
16-bit	0-65535	unsigned integer
32-bit	-3.4×10 ³⁸ - +3.4×10 ³⁸	6-7 decimal digits, NaN, Infinity, -Infinity
8-bit + lookup table	0-255	indexed color
24-bit	3 times 0-255	RGB
hyperstack	n channels of 8, 16 or 32 bit	3d + time + n channels

WHAT IS A DIGITAL IMAGE? – CONVERSION TRAPS

- · look at green channel
- multiply by ten
- · convert both to 8-bit
- compare total intensity before and after

Label	Mean	Min	Max	IntDen
green	100.9	0	4095	13774198
10 x green	1009.0	0	40950	137741980
green 8bit	6.3	0	255	861340
10 x 8bit	6.3	0	255	861340

conversion is done by linearly scaling from min–max to 0–255

WHAT IS A DIGITAL IMAGE? – STORED ON A DISK

- data (sample values) + meta-data in header
- different organization of data and meta-data
- different possibilities / restraints

format	name	provider	properties
tiff	tagged image file format	Adobe	lossless / metadata
ome-tiff	open microscopy environment-tiff	OME	tiff with ontology for microscopy metadata
jpeg exif	Joint Photographic Experts Group - exchangeable image file format	ISO	lossy data compression / minimal metadata
lsm, stk	Laser scanning microscope file	Zeiss	extensions of tiff
lif	Leica image file format	Leica	can contain multiple images in one file
			 artefacts from jpg-compression

WHAT IS A DIGITAL IMAGE? – THE IMAGE AND THE REAL WORLD

- sampling and resolution
 - digital image finite number of samples
 - Nyquist-Shannon sampling theorem:

"The sampling interval must be smaller than one-half the size of the smallest resolvable feature of the optical image"

WHAT IS A DIGITAL IMAGE? – THE IMAGE AND THE REAL WORLD

- sampling and resolution
 - resolution of an optical system
 - the smallest distance at which two objects can still be distinguished $0.61 \pm \lambda$
 - given by the Rayleigh criterion
 - therefore the pixel size must be

$$A x < \frac{\lambda_{em}}{4 * NA}$$
 for widefield
$$A x < \frac{\lambda_{ex}}{8 * NA}$$
 for confocal

BIOLOGICAL IMAGE ANALYSIS - INTRODUCTION AND OVERVIEW

 $r = \frac{0.61 * \lambda}{NA}$

WHAT IS A DIGITAL IMAGE? – THE IMAGE AND THE REAL WORLD

- point spread function (psf)
 - the way an optical system images one point
 - a point = an object at the limit of the resolution
 - acquired image = object function convolved with psf

WHAT IS A DIGITAL IMAGE? – IMAGE AND PERCEPTION

How many colors do you see?

the image contains 3 different colors

the brain interprets color according to the background

WHAT IS IMAGE ANALYSIS?

Wikipedia

 "Image analysis is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques."

	Area	Perim.	
1	6101	353.061	
2	7047	329.120	
3	5455	292.392	
4	7524	328.191	
5	5653	300.978	
6	6178	304.392	
7	4583	296.392	
8	7312	333.120	
9	68 20	343.345	

IMAGE IN – FEATURES OUT

POINT OPERATIONS

- global intensity transformations
 - intensity inversion
 - contrast and brightness adjustment
 - linear

•

- gamma function
- histogram equalization
- pseudo-coloring
- intensity thresholding

POINT OPERATIONS – CONTRAST STRETCHING

POINT OPERATIONS – GAMMA FUNCTION

- linear function
 - changes small and high values in the same way

٠

POINT OPERATIONS – LOOKUP TABLES

POINT OPERATIONS – THRESHOLDING

segmentation – separate objects from background

- what threshold value?
- same for all images?
- can be done by applying a global threshold BIOLOGICAL IMAGE ANALYSIS - INTRODUCTION AND OVERVIEW

LOCAL FILTERING

- convolution filter (linear filtering)
 - smoothing
 - mean filter
 - gaussian blur filter
 - edge detection
 - sobel filter
 - spot detection
 - Laplacian of Gaussian (Mexican Hat Filter)
- ranking filter
 - median, min, max
- mathematical morphology
 - post processing
 - erode, dilate, open, close, top hat, granulometry

The new value of a pixel is calculated from the values in the local neighborhood of the pixel

LOCAL FILTERING – CONVOLUTION FILTER

CONVOLUTION FILTER – SMOOTHING

mean

CONVOLUTION FILTER – SMOOTHING

gaussian blur

CONVOLUTION FILTER – SPOT DETECTION

- Laplacian filter enhaces spots but augments noise
- use 'Laplacian of Gaussian (LoG)' to enhance spots in noisy images

lapbaGian

LOCAL FILTERING – RANKING FILTER

- for each pixel
 - sort the values in the neighborhood
 - take the value at a given position
 - first = min filter
 - middle = median filter
 - last = max filter

enlarge dark regions filter noise enlarge bright regions

15	18	14
29	27	13
12	19	21

15	18	14
29	18	13
12	19	21

$\boldsymbol{12},\ 13,\ 14,\ 15,\ \boldsymbol{18},\ 19,\ 21,\ 27,\ \boldsymbol{29}$

RANKING FILTER – MEDIAN FILTER

• + stable against outliers • - can be long to calculate

LOCAL FILTERING – BINARY MORPHOLOGY

- correct segmentation, measure features, granulometry, edge detection, skeletonization, reconstruct objects
- work on a mask (a binary image)
- move the structuring element (SE) along the image
- two basic operations

1. dilate (enlarge objects): one if SE touches object 1. erode (shrink objects): one if SE completely within object

BINARY MORPHOLOGY – OPEN AND CLOSE

- close(X) = dilate(erode(X))
- open(X) = erode(dilate(X))

close holes in objects remove small objects

BINARY MORPHOLOGY – APPLICATIONS

skeletonization

granulometry

GRAYSCALE MORPHOLOGY

- · dilate max over structuring element
- erode min over structuring element
- Example: grayscale top-hat filter (I-open(I))

- Fourier Transform
 - low-pass
 - high-pass
 - band-pass
 - correlation
 - convolution

FILTERING IN THE FREQUENCY DOMAIN – FOURIER TRANSFORM

$$F(\mathbf{v}) = \int f(x) e^{-i2\pi \mathbf{v} x} dx$$

- \cdot signal can be represented as sum of sinoids
- FT transforms from spatial to frequency domain

low pass filter

high pass filter

IMAGE RESTORATION

- · image degraded
 - noise
 - quantum nature of light (poisson distribution)
 - imperfect electronics (gaussian distribution)
 - → filter
 - background
 - imperfect illumination
 - blur
 - out of focus light

IMAGE RESTORATION – BACKGROUND SUBTRACTION

 $\frac{I}{B} \cdot mean(B)$

- correct inhomogeneous illumination
 - correct with image of background
 - if not available: estimate background image

IMAGE RESTORATION – DECONVOLUTION

blur

٠

- diffraction
- out-of-focus light
- acquired image = object function convolved with psf

DECONVOLUTION – EXAMPLES

SEGMENTATION – REGION GROWING

- separate objects from background and objects from each other
 - region growing
 - clustering

•

- watershed transform

SEGMENTATION

- start from seed-points
- simultaneously grow regions

stop according to a homogeneity criterium

SEGMENTATION – WATERSHED

- interpret intensity as valleys
- fill slowly with rising water
- \cdot whenever two basins join create a separation

problem: over-segmentationpossible solution: seeded watershed

GEOMETRICAL TRANSFORMATION

- · problem:
 - image is spatially distorted or
 - mismatch between channels due to chromatic aberration
 - barrel distortion or pincushion distortion
 - specimen moved during acquisition
 - lacks spatial correspondence
 - histological slices
 - combining images from different sources
 - stitching of images of a mosaic
- solution:
 - image registration or alignment

IMAGE REGISTRATION

coordinate transformation

- landmark based
 - manually selected
 - automatically extracted
- intensity based
 - calculate match between images
- possible transformations
 - rigid, affine, curved
- re-sampling
 - interpolation
 - nearest neighbor, linear, cubic spline

EXAMPLE REGISTRATION

spinal cord grey matter traumatic lesion

EXAMPLE STITCHING

http://fiji.sc/wiki/index.php/Stitching#Stitch_Image_Grid_Sequence

VISUALIZATION

- how to understand multidimensional data?
 - reduce dimensionality in a sensible way
- · methods
 - volume rendering
 - methods that use the raw data directly without geometrical representation
 - ray tracing
 - maximum intensity projection (MIP)
 - blend (calculated from all information along the ray)
 - surface rendering
 - take into account only surfaces of objects
 - needs a description of the object in terms of geometrical entities

VISUALIZATION – VOLUME RENDERING

VISUALIZATION – SURFACE RENDERING

VISUALIZATION – MIXED RENDERING

COLOCALIZATION ANALYSIS

FILAMENT TRACING AND ANALYSIS

- possible approach
 - second order derivatives (hessian matrix)
 - cost image
 - shortest paths
- · automatic or semi-interacitve
- spine detection

FILAMENT TRACING AND ANALYSIS – EXAMPLE

PARTICLE DETECTION AND TRACKING

- · 2 steps
 - detection of particles (spots) per time-frame
 - least-squares fitting of a Gaussian mixture model to the image data
 - linking of particles in successive frames
 - problem: number not constant over time

PARTICLE DETECTION AND TRACKING

CELL SEGMENTATION AND TRACKING

- · cells have a distinct shape
- shape may change over time
- · use active contours (snakes) to detect cells
 - active surfaces in 3D
 - shape constraint fitting to image data
- tracking
 - use contour of cell at t=n
 as initial contour for cell at t=n+1

CELL SEGMENTATION AND TRACKING

SOFTWARE TOOLS

- · Imaris (bitplane)
- Volocity (PerkinElmer)
- · Avizo (vsg)
- · FIJI (open source)
- ImageJ (open source)
- Matlab (MathWorks)
- huygens (svi)
 - hrm (open source)
 - Nature Methods, July 2012, Volume 9 No 7, Focus on Bioimage Informatics
 - Biological Image Analysis Primer, E. Meijering and G. van Cappellen, Erasmus MC, October 2006

Segmentation on a 2d slice of the Corpus callosum

The Corpus callosum in the 3D Viewer

THANK YOU

Questions?

