Chapter 4

What is a digital image?

4.1 How is the image represented by the computer? – Pixels

Images can have 2 or 3 spacial dimensions, a time dimensions and a number of colour-channels. An image is a rectilinear array of point samples (pixels).

- a) Open the image example1.tif from the folder 04 what is a digital image. Run the macro Display_Pixel_Values from ImageJ's macro webpage.
- b) Zoom into the image. You should now see little homogeneous squares. Note that this is just one possible way to display the pixels. As said above we should rather think about them as point samples. Go to Edit>Options>Appearance and select Interpolate Zoomed Images. What happens?
- c) Are higher pixel values displayed brighter or darker than lower ones? Run Image>Lookup Tables>Invert LUT. What is the answer to the question now?
- d) Save the image as text-image (File>Save As>Text Image). Open it with

a text editor, change some values to 255 and save the modified file. Reimport the text-image into ImageJ (Import>Text Image).

4.2 How is the image represented by the computer? – In memory image formats

ImageJ has different ways to represent images, each one with different capabilities.

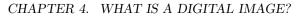
- 8-bit greyvalues unsigned integer between 0 and 255 $(2^0 1 2^8 1)$
- 16-bit grey values – unsigned integer between 0 and 65535 $\left(2^0-1-2^{16}-1\right)$
- 32-bit greyvalues signed floating point ±3.4*10³⁸; precision 6-7 decimal digits; special values like NaN for Not a Number, Infinity and -Infinity
- 8-bit color not really a type, useful to convert RGB to 8-bit and a color mapping of the greyvalues (lookup-table or LUT)
- RGB Color 24bit color image, consisting of three 8-bit images, one for each component red, green and blue.
- Hyperstacks allows to display overlays of an unlimited number of channels. The channels are 8-, 16- or 32-bit images.

The histogram of an image shows the number of times a grey-value is present in an image for all grey-values. Press h (Analyze>Histogram) to display the histogram of an image.

a) Open the image Hoechst.tif from the folder 04 - what is a digital image. Display the histogram. Use the commands from the menu Process>Math to add 100, subtract 100, divide by 2 and multiply by 2. Show the different histograms. Between two operations revert the image (ctrl+r). What are the values you expect for count, mean, min, max and mode (mode is the most frequent intensity in the image the intensity value with the highest peak in the histogram).

	count	min	max	mean	stdDev	mode
original						
+100						
-100						
×2						
/2						

Press the list button on the histogram of the image multiplied by 2. Each second row has the value 0. Can you explain why?


OW IS THE IMAGE REPRESENTED BY THE COMPUTER? – IN MEMORY IMAGE FORMATS

- b) Open the image cells-16bit.tif. Display the histogram. What is the maximum value? Hint the camera uses 12 bit. Note that the histogram uses 256 bins and not one count for each grey-value. Press the list button to see the start values of the bins.
- c) What would you have to do in order to make the image in b) use the full range of available grey-values?

Apply your calculation using Process>Math>Macro... and look at the histogram again.

- d) Open the image Hoechst.tif and convert it into a 32bit image (Image>Type>32-bit). Look at the histogram. Multiply the image by 2 and look at the histogram again. Divide the image by zero. What is the result? Multiply it by -1. What are the pixel values now? Divide it by Infinity.
- e) (OPTIONAL) Revert the image Hoechst.tif and convert it to 32 bit again. Divide it by 255. What is the maximum now? Add 1e + 38 (i.e. $1 * 10^{38}$). What is the maximum? Multiply by 10. What happens?

f) Open the image 7P7.JPG. Move the mouse over the image and look at the statusbar. You should see three values for each pixel for the components red, green and blue. Open the histogram by pressing h (Analyze>Histogram). Press the RGB button multiple times. What does it do?

g) How does colours on the screen mix? Create a new hyperstack with 3 channels, 1 slice and 1 frame. Use type 8-bit and mode Color. Create a filled circle on each channel then open the channels tool and switch to Composite mode. Hint: To create a filled circle, make a circular selection, select white as foreground color using the color-picker tool and call Edit>Fill. What color do you obtain from mixing red and blue, blue and green, green and red? What color do you obtain from mixing red, green and blue?

red and blue	=
blue and green	
green and red	=
red, green and blue	=

4.3 How is the image represented by the computer? – Conversion traps

When converting between image formats you need to be careful in order not to loose information or to create artefacts. You should always keep a copy of your unmodified images.

a) Open the image cells-16bit.tif. Make a copy (shift+d) and multiply it by 10. Measure the mean and total intensity in the two images. Convert the images to 8bit and measure again. What is the ratio of the intensities in the two images before and after the conversion? What does a person that only knows the 8 bit versions conclude? Can you explain what happened?

b) Switch the scaling when doing conversions off (Edit>Options>Conversions). Convert the image again from 16 bit to 8 bit. What happens. Subtract the minimum value before doing the conversion. What happens now? Switch the scaling on again.

c) Open the image ophrys.tif. Make two copies of the image ophrys-1.tif and ophrys-2.tif. Convert ophrys-1.tif to 8 bit using Image>Type>8-bit. Under Edit>Options>Conversions switch weighted RGB conversions on (or off if it was on before). Compare the intensities of the pixel (160, 350) in the two images.

4.4 How is the image represented by the computer? – On disc image formats

Different file formats for storing images exist. They differ in the way the data and metadata are organized. Some formats use compression (lossless or lossy) others do not. In scientific image processing lossy compression should generally be avoided, if there is not a very good reason in a special case to use it.

Some common formats are:

- tiff tagged image file format (c) Adobe lossless, metadata the format ImageJ prefers
- jpeg exif Joint Photographic Experts Group (ISO) Exchangeable image file format lossy data compression
- lsm, stk laser scanning microscope file proprietary formats from Zeiss extensions of tiff
- lif leica image file format proprietary format from Leica can contain multiple, multidimensional images
- a) Load the image nb.tif, save it as jpeg-image and load the saved jpeg image. Zoom in and compare the two images (make sure that the option Interpolate zoomed images is switched off). Measure and compare the intensity in the two images.
- b) Use the loci-bioformats importer to read the meta-data of the image cafe.lsm in the folder O1 opening images and the metadata of one of the images in the folder O1 opening images/arabidopsis.

4.5 The image and the real world – sampling and resolution

The *resolution* of an optical system is the smallest distance at which two objects can still be distinguished. It is given by the Rayleigh criterion:

$$r = \frac{0.61 * \lambda}{NA} \tag{4.1}$$

where λ is the wavelength and NA the numerical aperture of the objective.

Sampling is the process of converting a continuous signal into a discrete sequence of numbers. A confocal microscope uses a photomultiplier to construct an image point by point with a configurable distance between the points (i.e. the samples). The size of a pixel depends on magnification of the objective and the step size. A widefield microscope uses a ccd camera in which each ccd element has a certain size and represents a certain area of the object (depending on the magnification).

How dense does the samples I take have to be? The Nyquist-Shannon sampling theorem states: "The sampling interval must not be greater than one-half the size of the smallest resolvable feature of the optical image". Smaller intervals lead to loss of information and aliasing artefacts, larger intervals do not add information.

According to http://www.svi.nl/NyquistRate the distance between two pixels should be:

$$\Delta x \le \frac{\lambda_{em}}{4 \cdot NA} \tag{4.2}$$

in case of a widefield microscope. λ is the emission wavelength and the NA the numerical aperture of the objective.

$$\Delta x \le \frac{\lambda_{ex}}{8 \cdot NA} \tag{4.3}$$

in case of a confocal microscope. λ is the excitation wavelength in this case.

The *point spread function* is the way an optical system images a point (an object at the limit of the resolution). The creation of an image by an optical system can be described as a convolution between the object function (the real ideal image) and the point spread function.

a) Use the loci-bioformats importer to find the excitation wavelength and numerical aperture of the system that was used to take the image cafe.lsm from the folder O1 opening images. What is the optical resolution of the system? What is the sampling interval?

Hints: It could be useful to copy the data into a text-editor and to use the find-command of the text-editor. The excitation wavelengths can be found under IlluminationChannel. The channels that are used have an entry different from 0 in the field Aquire. The (maximal) numerical aperture

is a property of the objective. The sampling interval can be found under VoxelSizeX and VoxelSizeY.

Has the image been sampled at the Nyquist-interval or is over- or under-sampled?

- b) Open the image 04 what is a digital image/Bead. This is the image of a fluorescent bead taken with a widefield microscope. Display the image in 3D using the Volume Viewer or the 3D-viewer.
- c) Open the image 04 what is a digital image/PSF. This is a theoretically calculated point spread function for a widefield microscope with NA=1.4 and lambda=530nm. Use Image>Properties to enter the correct sampling distances (dx=64.5nm and dz=160nm). Display the image in 3D using the Volume Viewer or the 3D-viewer.
- d) Take one slice from the middle of the psf image and convolve the image bridge.tif with it. You can use Process>FFT>FD Math to calculate the convolution. The images must have the same size. Enlarge the canvas of the psf image using Image>Adjust>Canvas Size.... Make a deconvolution of the result and the psf.
- e) Create your own 2d psf image that consists of small horizontal white line. Do the convolution and the deconvolution. What process could this psf describe?

4.6 Image and perception

When comparing colours, intensities values or object sizes visually you must be very careful. The human perception can play us tricks.

- a) Open the image Spirals.png. How many different colours are in the image? Can you list their RGB values?
- b) Open the image whites-illusion.tif. Which grey bars are brighter, the ones on the left or the ones on the right? Measure the intensity values. Can you explain this?

- c) Open the image lines.tif. Which line is longer, the upper line or the lower line? Measure the lengths.
- d) Open the image Ebbinghaus.tif. Which central dot is larger, the left one or the right one? Use thresholding and the wand-tool to measure the areas of the two dots.
- e) Open the image Kanizsas-triangle.tif. Do you see the white triangle that is standing on its head? Use thresholding and the wand-tool to measure its area.