

Making my macros, scripts and
plugins better by refactoring

I2K 2022

Montpellier Ressources Imagerie
Leo Tellez and Volker Bäcker

Introduction
● “Refactoring: a change made to the internal

structure of software to make it easier to understand
and cheaper to modify without changing its
observable behavior.”

Refactoring: Improving the Design of Existing Code by
Martin Fowler, Kent Beck, John Brant, William Opdyke,
Don Roberts, 1999, Addison-Wesley Professional,
ISBN: 0201485672

Introduction
● Refactor

– When you have to add a feature to a program
● and the code is not structured in a convenient way to add the feature

– When you get a bug report, start by writing a unit test that exposes the bug.
– When you feel the need to write a comment

● Before you start refactoring, check that you have a solid suite of tests.
● Refactoring changes the programs in small steps.
● Three strikes and you refactor.

“Any fool can write code that a computer can understand. Good programmers
write code that humans can understand.” Martin Fowler

Why should you refactor?
● Refactoring Improves the Design of Software
● Refactoring Makes Software Easier to

Understand
● Refactoring Helps You Find Bugs
● Refactoring Helps You Program Faster

Code smells (examples)
Code smell Refactorings

Duplicated Code Extract Method, Extract Class, ...

Long Method Extract Method, Method Object, ...

Lots of Parameters Parameter Object, ...

Large Class Extract Class, Extract Subclass, ...

Speculative Generality Remove Parameter, Rename Method, ...

What is long, large ?
But, no more than
3 positional parameters
3! = 6, 4! = 24

Software engineering principles
● Some basic principles to start with:

– break your code down in small units
● each unit does one thing (has one responsibility)
● each unit has no more than 7±2 subunits
● consistent level of abstraction

– control redundancy
● never have the same 2+ lines of code appear multiple times
● never use literal values in the middle of the code

– write code for the human reader
● use self-explaining names
● avoid abbreviations that are not domain standard

– stdDev is ok, imp is not

– avoid clutter
● prefixex, type, scope, ...

Programming is Gardening,
not Engineering

● The garden doesn't quite come up the way you drew the picture.
● This plant gets a lot bigger than you thought it would.

– You've got to prune it.
– You've got to split it.
– You've got to move it around the garden.

● This big plant in the back died.
– You've got to dig it up and throw it into the compost pile.

● These colors ended up not looking … good next to each other
– You've got to transplant this one over to the other side of the garden.

https://www.artima.com/articles/programming-is-gardening-not-engineering

Andy Hunt

The Pragmatic Programmer, Andrew Hunt and David Thomas, 1999, Addison Wesley, ISBN 0-201-61622-X

https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-201-61622-X

Example
https://github.com/MontpellierRessourcesImagerie/I2K2022-Refactoring-Workshop

https://github.com/MontpellierRessourcesImagerie/I2K2022-Refactoring-Workshop

Step one
● Write unit tests

function testIsInputImage() {
 image1 = "test.tif";
 result = isInputImage(image1);
 image2 = "test.TIF";
 result = result && isInputImage(image2);
 image3 = "test.png";
 result = result && !isInputImage(image3);
 return result;
}

Step two
● Make the global variables visible

– varianceFilterRadius
– VARIANCE_FILTER_RADIUS

● So that the difference between local and global variables
becomes evident

● Find and rename, but check with Find first

if (MEASURE_IN_PIXEL_UNITS)
 run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel");
getPixelSize(unit, pixelWidth, pixelHeight);

Step three
● Remove unused code

● Find reveals that unit, pixelWidth and
pixelHeight are never used

if (MEASURE_IN_PIXEL_UNITS)
 run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel");
getPixelSize(unit, pixelWidth, pixelHeight);

if (MEASURE_IN_PIXEL_UNITS)
 run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel");

Step four
● Replace algorithms by “better”, equivalent algorithms

– Make sure the results are absolutely identic including side
effects

run("Options...", "iterations="+RADIUS_CLOSE+" count=1 black do=Close stack");
run("Options...", "iterations=1 count=1 black do=Nothing");

for (i=0; i<radiusOpen; i++) {
 run("Dilate", "stack");
}
for (i=0; i<radiusOpen; i++) {
 run("Erode", "stack");
}

Step Four part 2

run("Options...", "iterations="+RADIUS_CLOSE+" count=1 black do=Close stack");
run("Options...", "iterations=1 count=1 black do=Nothing");
run("Select All");
run("Enlarge...", "enlarge=-" + RADIUS_CLOSE + " pixel");

run("Options...", "iterations="+RADIUS_CLOSE+" count=1 pad black do=Close stack");
run("Options...", "iterations=1 count=1 black do=Nothing");

● Using pad makes the correction of the border unnecessary
● This changes behavior, but fixes a bug

Interlude
run("Select None");
if (MEASURE_IN_PIXEL_UNITS)
run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel");
run("Duplicate...", "duplicate");
setForegroundColor(0, 0, 0);
setBackgroundColor(255, 255, 255);
roiManager("reset")
roiManager("Associate", "true");

if (METHOD=="variance")
 thresholdVariance();
else
 thresholdFindEdges();
run("Convert to Mask", " black");
resetThreshold();

Some setup

Create mask,
gap foreground

Interlude

run("Invert", "stack");
run("Options...", "iterations="+RADIUS_CLOSE+" count=1 pad black do=Close stack");
run("Options...", "iterations=1 count=1 black do=Nothing");
run("Invert", "stack");

run("Analyze Particles...", "size="+MINIMAL_SIZE+"-Infinity circularity=0.00-1.00
show=Nothing add stack");
close();
run("Clear Results");
roiManager("Measure");
roiManager("Show None");
roiManager("Show All");

Morphological close on tissue

Step five
● Extract functions

function measureActiveImage() {
 if (MEASURE_IN_PIXEL_UNITS) removeScale;
 initialize();
 createMaskWithGapAsForeground(METHOD, VARIANCE_FILTER_RADIUS, THRESHOLD);
 applyMorphologicalCloseOnTissue(RADIUS_CLOSE);
 createRoisOfGaps(MINIMAL_SIZE);
 closeMask();
 roiManager("Measure");
 roiManager("Show All");
}

OOP version in jython

def main():
 analyzer = getAnalyzer()
 analyzer.run()

def getAnalyzer():
 analyzer = ScratchAssayAnalyzer(inputImage)
 if measureInPixelUnits:
 analyzer.setMeasureInPixelUnits()
 createMaskMethods = {"variance" : CreateMaskFromVariance(inputImage, filterRadius, threshold),
 "find edges" : CreateMaskFromFindEdges(inputImage)}
 analyzer.setCreateMaskMethod(createMaskMethods[feature])
 analyzer.setCloseIterations(closeRadius)
 analyzer.setMinimalArea(minimalArea)
 return analyzer

main()

Let’s get to work

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

